被消費者認為是在交智商稅的NMN是偽科學嗎?

NMN曾經一度被嘲諷為消費者又繳了一筆“智商稅”。但是NMN強大的作用

功效依舊讓不少消費者為其買單,而我國作為人口老齡化最嚴重的國家,N

MN的火速出圈將在中國市場上佔據很大的上升空間。NMN作為抗衰類保健

產品的行業,其崛起從另一方面反應,消費者對保健產品的需求不再是簡單

的養生、補充營養,而是更多的追求產品的深層次改善。隨著當今社會人類

對健康認知的轉變,人類的健康意識加強,越來越多的消費者願意為自身健

康買單,而像NMN這樣的具有抗衰老類型的保健品深受消費者青睞,佔據

市場保健行業的暢銷榜龍頭。

隨著年齡的增長,人體的免疫力逐漸下降,身體抵抗力會逐漸降低,

而患病的風險就越高,人們更難從季節性流感病毒中恢復。研究表明

,NMN的水準在調節免疫反應和衰老過程中的炎症和細胞存活中起著

至關重要的作用。此研究還強調了NMN對免疫功能障礙的治療潛力。

NMN目前在中國市場上得到了較好的肯定,但新事物的崛起,背後總

會有混亂的市場,抗衰老功效是NMN在保健行業內最有力的競爭點,

市場上開始出現了各式各樣的NMN品牌,層出不窮,這樣魚目混珠的

產品會在消費者心中大打折扣。在此風口浪尖上,NMN會如何站穩腳

跟,保持在保健行業的市場龍頭,是對NMN真正的磨煉。

記者瞭解到,美國生物科技研究中心研發的NMN是目前提高免疫力的首選,

它還可以幫助對抗神經疾病,據瞭解,美國生物研究中心是全球頂尖的研究

中心,其很早就發現了NMN對免疫力有提升效果,基於NMN產品的配方單

一,純度低,美國基因研究中心組織一支專家團隊開展複合型NMN的研究。

康朗NMN9600告訴小編:“有很多有體檢習慣的客戶,在吃了我們產品一段時間

之後回饋稱,身體體檢時的部分指標更接近健康水準,但是嚴格來講,對於每個

人的改善肯定是有所不同的,具體要根據個人的健康狀況。”

“長生不老藥”如此火爆既是商家廣告宣傳運作的結果,也與各位商界名人的“商業背景”分不開。

“長生不老藥”NMN可減輕年齡相關的生理衰退

煙醯胺單核苷酸:一種在多個領域有治療作用的潛力巨大的化合物

 NMN可以開拓現代療法的新視野。該生物分子已經證明在幾個臨床前疾病包括心腦缺血,

神經退行性疾病如阿爾茨海默病和糖尿病被發現有益的藥理活性。NIN發揮其作用,大部分

是通過促進NAD合成來實現的。但是較高劑量的直接NAD的使用有時會出現失眠,疲勞和

焦慮等副作用,而已有的文獻研究發現服用NMN並無此類副作用,且與NMN相比,NAD具

有較弱的細胞膜穿透能力

1、心臟保護

心臟發生缺血時,心肌細胞、心肌細胞中的氧氣量以及三磷酸腺苷(ATP)水準降低。

進一步惡化後,這些心肌細胞會發生壞死。再灌注,也稱為再氧合過程,是將血液重

新供應給組織的事件,該組織先前已經經歷缺血。再灌注導致血液重新進入組織細胞

,導致微血管損傷和ROS產生導致鈣(Ca2*)超載。這些連續事件導致嚴重的組織損傷

。缺血後再灌注是一種致命的疾病,它被稱為缺血預處理或 IPC的人體機制所抵消。

NMN在細胞內轉化為NAD +,其通過SIRT1蛋白執行生理功能。

(a)SIRT1蛋白引起FOXO轉錄因數賴氨酸殘基的脫乙醯化,其刺激過氧化氫酶抑制ROS和導致缺血再灌注損傷的鏈反應。

(b)在正常情況下,NFκB轉錄因數複合物的p65亞基以其乙醯化形式表達ROS,其也是胰島素抗性的原因。

SIRT1由於其固有的去乙醯化活性,使p65-NFκB去乙醯化,從而抑制ROS的產生,ROS是造成2型糖尿病發生的原因。

(c)SIRT1還使蛋白質PGC-1α去乙醯化並刺激負責線粒體生物發生的蛋白質的表達,其可用於治療阿爾茨海默氏病。

除了這種SIRT1介導的機制外,另一種顯示負責這種心臟保護活性的途徑是糖酵解或酸中毒的刺激,

這取決於相應於缺血發生的NMN遞送的時間。如果在缺血事件發生之前提供NMN,則增加糖酵解以

促進缺血事件期間的ATP產生,從而促進心臟保護。相反,當在再灌注期間給予NMN時,其通過誘

導酸中毒來保護心臟,主要由心臟乳酸和丙酮酸引起。這導致線粒體通透性轉換孔的關閉,因此確保心臟保護。

2、改善肥胖以及相關症狀

NMN能以劑量依賴的方式減少與年齡相關的體重增加。在該研究中,與對照組相比,

在12個月的持續時間內使用的100mg/kg和300mg/kg劑量的NMN分別能夠使體重減輕

4%和9%而不損害生長和食欲。肥胖與糖尿病的病理學之間存在相互聯繫。NMN還改

善了代謝紊亂,如葡萄糖耐受不良和肝臟中檸檬酸合成酶的低活性。

1、NMN概述

煙醯胺單核苷酸(NMN)它以兩種異構體形式存在,即α-NMN和β-NMN

。其中β-NMN是具有生物活性的異構體,分子量為334.221 g / mol。NMN天然存在於各種食物中。

像西蘭花,捲心菜的蔬菜含有0.25-1.12和0.01-0.90毫克NMN / 100克,鱷梨,番茄等水果含有0.36-1.60和0.26-0.30毫克NMN / 100克。

NMN與其他NAD+前體—-煙醯胺核苷(NR),煙酸和煙醯胺具有相似的特性。

與NMN不同,煙酸和煙醯胺在其治療應用方面具有若干缺點。煙醯胺可能引起肝

毒性或潮紅,而最近的臨床前研究表明,它駐留在鼠體相比NMN 更短的時間週期

。當作為立即釋放製劑給藥時,煙酸或煙酸與皮膚潮紅等副作用有關,而持續釋放

製劑可能引起肝毒性。在NAD +前體中,NR和NMN是例外,因為這兩種代謝物的

不良副作用較少。此外,煙醯胺核糖苷也像NMN一樣口服生物可利用。

在這篇綜述中,討論了NMN的生物合成途徑和吸收,然後綜合分析了臨床前報導的

藥理學特性及其潛在的作用機制。這將提供對轉化這些成功的臨床前結果以治療人類

疾病的可能性的見解。

2.生物合成和吸收機理

由於NMN是NAD +生物合成的中間產物,首先我們需要關注NAD +的生物合成,

以正確理解NMN合成。這種特殊的生物合成途徑對於闡明可以補償NAD +缺乏的

機制很重要。NAD +由哺乳動物細胞中的三種不同途徑合成:

1)從色氨酸中從頭合成途徑,2)從煙醯胺或煙酸合成的補救途徑,或3)NR的轉化。

補救途徑是在哺乳動物細胞中。在該途徑中,NAD+的中間降解產物,

例如煙酸和煙醯胺被重新用於產生新的NAD+。最常見的是,該途徑涉

及煙酸磷酸核糖基轉移酶1將煙酸轉化為煙酸單核苷酸,然後在煙胺單

核苷酸腺苷醯轉移酶13存在下腺苷酸化為煙酸腺嘌呤二核苷酸。有時,

煙酸直接轉化為煙酸腺嘌呤煙酸磷酸核糖轉移酶二核苷酸。然後在NAD

+合成酶1的幫助下將其轉化為NAD+。該NAD+通過NAD+消耗酶降解為

煙醯胺,然後通過煙醯胺磷酸核糖轉移酶的催化活性轉化為NMN。

生物合成之後的問題是口服給藥後NMN的吸收機制。生物合成後,NAD+

很容易通過腸壁吸收。在小鼠模型的幫助下,發現NMN從腸道到血液迴圈

吸收在2-3分鐘內開始,並且在15分鐘內,它完全被吸收到組織中。然後將

其轉換並立即作為NAD+儲存在肝臟,骨骼肌和皮質等組織中。肝臟NAD+

含量的增加持續約30分鐘。NMN給藥6個月後,可以在肝臟和棕色脂肪組

織中觀察到這種加標濃度的 NAD,但不能在骨骼肌和白色脂肪組織中觀察到。

NMN為什麼在抗衰老領域如此神奇?!

哈佛醫學院遺傳學教授大衛·辛克萊爾首先在2013年進行的一項研究中發現,

在衰老過程中扮演重要角色的Sirtuins蛋白家族,其活性與生物體內的一種重

要輔酶NAD+密切相關。經科學家研究證明,隨著年齡的增長NAD+在人體內的

含量逐漸降低,線粒體和細胞核之間的交流受損,許多研究認為NAD+的減少也

損害了細胞產生能量的能力,也可能是我們衰老和很多疾病的原因。因此,補充

NAD+的含量可以同時增長健康壽命和延緩衰老。

衰老領域的革命性突破

NAD+與抗衰老

抗衰老領域的研究在進入21世紀後取得了空前的進展。自2013年12月由哈佛醫學院衰

老生物醫學中心遺傳學教授大衛.辛克萊爾研究組首次發現,人體內的一種輔酶NAD+

既是DNA修復系統的重要原料,又是細胞核與線粒體間的關鍵聯絡因數,且NAD+在

體內的含量會隨著年齡的增長而衰退。NAD+在與人類相近的實驗動物體內表現出了

驚人的逆轉衰老、延長壽命效應。隨後,多個知名實驗室迅速跟進,華盛頓醫學院甚

至證實其使老年哺乳動物的平均剩餘壽命延長了130%(其效果等同於一位僅剩6年壽

命的老人又多活了8年以上)。最終證實維持體內充足的NAD+以保持細胞的NDA修

復能力及能量供應,正是抑制衰老延長壽命的關鍵。

 

NAD+存在於每一個細胞中參與上千項反應,是人體內的關鍵性輔酶。近年來科學家普遍

認同的主流衰老理論是NAD+在人體內的表達水準隨年齡增長而持續降低, NAD+水準的

下降導致細胞內PARPs(參與DNA修復、細胞能量代謝等關鍵生理活動的蛋白酶)功能不

斷下降以及線粒體活性降低,從而加速線粒體、細胞乃至整個機體的衰老及相關退行性疾

病的產生;而在疾病狀態下,細胞內的PARPs會被過度啟動,加速消耗、降低人體內NAD

+水準,並且逐漸形成惡性循環。

NMN與抗衰老

通過維持細胞內充足的NAD+來打破這一惡性循環,保持DNA的自我修復能力,

使年齡增長帶來的DNA損傷得以有效修復,正是抑制衰老的關鍵。但是,NAD+

由於分子量過大,無法直接以口服方式攝取至細胞內予以補充。最終,哈佛大學

的辛克萊爾實驗室和華盛頓大學的今井真一郎實驗室先後獨立發現:通過口服攝

取一種天然存在於哺乳動物體內的分子量較小的NAD+前提物質—NMN(煙醯胺

單核苷酸Nicotinamidemononucleotide),可以有效提高細胞內的NAD+含量,

並使老年動物體內的ATP(線粒體為細胞合成的能量分子)恢復到年輕動物的水準。

 

 

NMN是一種維生素衍生物,它天然存在於人體內、而實驗證明NMN能被身體直接轉

化為煙醯胺腺嘌呤二核苷酸(NAD +),直接補充NAD +的水準,吸收率更高,NMN通過在

細胞水準上修復受損的DNA來增加血管的產生和維持。補充NAD +之後肌肉耐力恢復能力提高60-80%。

 

 

2016-2018年間,哈佛大學、華盛頓大學、日本慶應大學等頂尖科研機構分別從逆轉肌

肉萎縮、提升體能;抑制衰老引起的認知能力下降;逆轉血管死亡、保護心腦血管功能

等多個角度對NAD+前體物NMN的抗衰老效應進行了詳細評估。結果一致表明,NMN

在抑制衰老方面具有全方位的顯著效果。比如在2018年3月發表於《細胞》的最新研究

報告中,NAD+前體物NMN成功逆轉了老齡動物的血管死亡和肌肉萎縮,並極大增強了

動物的活力,服用NMN的高齡動物體力超過同齡動物60%以上。最令人吃驚的是,口服

NMN帶來的NAD+回升,可以使與人類相近的實驗動物的壽命延長30%以上。

“長壽時代”是否真的來襲?NMN抗衰老為什麼會引發眾人追捧?

衰老是一種自然的過程,生物分子自然交流學對此作過比較系統的闡述。該學說在論證生物體衰老的分子機制時指出:生物體是一個不穩定的化學體系,屬於耗散結構。

體系中各種生物分子具有大量的活潑基團,它們必然相互作用發生化學反應使生物分子緩慢交聯以趨向化學活性的穩定。隨著時間的推移,交聯程度不斷增加,生物分子的活潑基團不斷消耗減少,原有的分子結構逐漸改變,這些變化的積累會使生物組織逐漸出現衰老現象。是皮膚與身體加速衰老的第一殺手。

人體衰老分三個階段

第一階段 輕度衰老35歲-45歲

輕微皺紋出現、精力不旺、體力透支、萎蔫不振、易疲勞、記憶力下降、易感冒、睡眠不好、食欲不振、皮膚黯淡無光、出現色斑、免疫力下降、注意力不集中、身體有某種不適或疼痛,但醫生查不出問題。

第二階段 中度衰老45歲—55歲

情緒波動、煩躁不安、焦慮、失眠、多疑、記憶力減退、乳房萎縮、腹脹、嚴重色斑、皮膚乾燥、彈性減退、皺紋加深,出汗。

第三階段 嚴重衰老55歲以後

人體進入快速衰老期,肌體全面老化,各種疾病纏身;女性45歲左右停經後,由於卵巢萎縮,雌性激素分泌減少,皮膚失水起皺、乳房下垂、體型趨胖,更容易引起心理焦慮,等心理疾病。女性進入快速衰老期。

2013年,哈佛醫學院教授、知名的抗衰老學者大衛.辛克萊在科學期刊《Cell》上發表了他的最新研究,讓NMN  這種小分子物質在不久後就成為了學術界和商業圈的雙重焦點。 辛克萊的這項研究表示,22月大(相當於人類60歲)的暮年小鼠在持續補充了7天的NMN後,線上粒體穩態和肌肉健康方面和6個月大(相當於人類20歲)的對照組小鼠十分接近,NMN具有改善哺乳動物體內衰老症狀,並延緩衰老的作用。在之後的幾年裏,NMN具有抗衰老這一功效得到了全球諸多科學家的確認,並且發現補充NMN並不會對人產生副作用。  

這一連串的發現引起人們的普遍關注,在2015年日本新興和制藥率先推出全球首款NMN概念性產品之後,NMN抗衰老的結論已經在全球得到蓋棺定論。我國主流媒體人民日報在2016年也對這一事件進行了報導。 NMN抗衰老的發現是人類漫長時間裏追求抗衰延壽領域的重要突破,很多普通人,包括一些科學家都紛紛表示,人類即將邁入“長壽時代”。康朗NMN全酶法技術實現了產業化的NMN產品也是備受人們的追捧。據中信數據分析,NMN每覆蓋我國1%的保健消費人口,市場空間就將上升304億,行業遠期規模可超千億。

  憑藉科學驗證的抗衰老功效,NMN產品確實受到人們的追捧。但是“長壽時代”是否來襲還是有待商榷。因為即便是NMN具有延緩衰老的功效,但是NMN並不是“續命”和“延壽”的靈丹妙藥,NMN抗衰老其實幫助延長的是人的健康壽命。按照辛克萊的說法就是“NMN增加的並不是20%的壽命,而是20%的青春”。

 簡單來說,就是假如一個人能夠活100年,但是到他80歲時,他就因為身體衰老以及其帶來的諸多病痛而備受折磨、纏綿病榻,甚至患上老年癡呆,那麼這樣的生活品質無疑是極差的,而NMN抗衰老就是幫助改善這種現象,如果你只能活100年,那麼就一直以健康的身體和清晰的思維活完100年。其實在筆者看來,後者可能更受到人們的追求。

被神化了的NMN真有這麼玄乎? (一)

為什麼連小孩子都不相信的“長生不老藥”,大人們卻信了?

古代時,“長生不老”、“延年益壽”等都是“上層階級”追求的終極目標,所以各種靈丹妙藥應運而生;如今,生活水準提升,教育發展進步,各種“抗衰老”、“逆齡生長”宣稱的食品、保健品層出不窮;但有點不可思議的是,在21世紀的今天,仍然有“長壽藥”備受消費者追捧:
2013年,哈佛大學一個研究團隊發現了一種名為“β-煙醯胺單核苷酸(NMN)”的物質,宣稱能夠有效延長小白鼠的壽命,製造商們便從中發現商機,此後各種含有NMN成分的食用產品在國外及國內網站上賣得火熱;
2017年,富豪李嘉誠在服用美國公司ChromaDex一款含有NR(NMN的前體)的補充劑後表示“感覺回到20歲”,隨即投資2500萬美元;
2019年,商界大佬潘石屹發微博親證,吃了麻省理工學院研發的一款NMN產品後,指甲長得很快;
除了富豪圈的大咖,還有學術圈的大咖也對NMN抗衰老的理念表示支持,其中不乏有諾貝爾得獎者……
在這些權威人士的認證下,在那些頂流人群的推動下,NMN迅速成為了風靡市場的香餑餑,各大媒體平臺爭相報導,各大小型企業爭相生產,於是像滾雪球一樣越滾越大,NMN被傳得神乎其神!
為什麼連小孩子都不相信的“長生不老藥”,大人們卻信了?今天將帶大家揭開NMN這一傳奇的面紗!

NMN是誰?

被“神化”了的NMN其實也不過是人體中很常見的維生素B3(又名煙醯胺)的衍生物,學名為“煙醯胺腺嘌呤單核苷酸”,以兩種形式——α和β——存在於部分水果蔬菜(花椰菜、捲心菜、牛油果、番茄)和禽肉(牛肉)中,而發揮生物活性作用的主要成分是β-NMN。

當NMN被吸收入人體後,可以直接跨越細胞膜,通過線粒體等“能量加工器”轉化為輔酶NAD+(氧化型煙醯胺腺嘌呤二核苷酸),而這一輔酶參與了機體內幾乎所有的生理反應,如能量生成、損傷修復、新陳代謝、組織再生等。

此外,研究表明,體內的NAD+會隨著年齡的增長而逐漸減少,而直接補充這一輔酶又不易被人體吸收,所以,作為NAD+的前身——NMN既好吸收又可體外合成——成為了當之無愧的明星產品。

NMN究竟“神話”在哪里?

1、支持NAD+生成,延緩機體衰老進程

早在1904年,NAD+就在釀酒過程中被發現,因其在酵母細胞代謝過程中的關鍵作用——提供能量——而被不斷探究。

煙酸、煙醯胺、煙醯胺核糖、NMN等NAD+前體在一次次實驗中被挖掘出來,尤其是它們的抗衰老、延長壽命的作用成為了經久不衰的熱門話題。

1937年,生化學家ConradElvehjem利用煙酸治療了狗的糙皮病,自此便開始應用在疾病治療中;而它經過醯胺化便可成為煙醯胺,至今都活躍在各大品牌的美白護膚品中。

1944年,煙醯胺核糖被發現能夠促進流感嗜血桿菌的生長;60年後,它才作為NAD+的前體應用於抗衰老研究。

2007年,美國愛荷華大學生物化學系教授CharlesBrenner發現了NMN延緩衰老的作用,此後對於NMN的研究就沒有停止過步伐。

2013年,哈佛大學醫學院David Sinclair教授的團隊分別對6個月大和22個月大的小鼠服用PBS(磷酸鹽緩衝溶液,可作為安慰劑即沒有治療作用)和NMN,一周之後,他們發現22個月大的老鼠體內的NAD+和ATP的量有顯著的上升,還有一些其他的衰老方面的生化指標也都有所逆轉。

圖E:6個月和22個月大的老鼠分別使用PBS和NMN之後,體內的NAD+的含量變化;圖I:6個月和22個月大的老鼠分別使用PBS和NMN之後,體內的ATP的含量變化

以上四種物質發揮作用的機制,均是在細胞內轉化為NAD+之後,提高線粒體的活性,加速組織修復和再生,輔助機體新陳代謝,從而提高人體免疫力、延緩衰老。
但是,相關研究表明,煙酸會引起皮膚潮紅、肝臟毒性等不良反應,煙醯胺在體內逗留時間過短、藥效發揮不充分,只有煙醯胺核糖和NMN不僅副作用少,還具有良好的口服生物利用性。
因此,NMN和煙醯胺核糖更多地被運用於膳食補充劑等保健品中。

2、啟動蛋白家族Sirtuins,參與生理反應

Sirtuins家族共有7種蛋白,分別存在於細胞核、細胞質和線粒體中,各司其職。
繼20世紀70年代,遺傳學專家Amar Klar博士發現了第一個SIR2蛋白之後,SIR3、SIR4、SIR5等其他蛋白被陸陸續續挖掘出來。
隨著科學家對這些蛋白的深入研究,它們的功效以及機制逐漸明瞭。有參與調控熱量限制的SIR2,有加快細胞修復、降低細胞對氧化損傷敏感性的SIR6,還有限制腫瘤細胞生長發育的SIR7……
因此,這一家族被人們稱為“抗衰老蛋白家族”。
而該蛋白的活化依賴的正是NAD+的催化作用,也可以說,NAD+發揮抗衰老的重要途徑之一便是啟動Sirtuins蛋白,使其調控細胞的新陳代謝以及基因的修復應激等過程。
2019年,科羅拉多大學生理學系的一個團隊開展了一項實驗,分別把年輕老鼠和年老老鼠分成對照組和NMN組,結果得出不管是年輕還是年老的老鼠體內,補充了NMN之後SIR1蛋白的水準都有顯著的提高。
此外,通過比較主動脈中乙醯化NFκB/總NFκB(比值越高,SIR1活性越低)這一數值發現,補充NMN能有效降低老年老鼠組的這一數值,也就是說,能有效恢復老齡化主動脈的SIR1活性。


YC:年輕小鼠對照組;OC:年老小鼠對照組;YNNM:年輕小鼠NMN組;ONMN:年老小鼠NMN組:圖A:SIRT1蛋白含量;圖B:乙醯化NFκB/總NFκB比值變化

是什麼科技?可能讓人活到150歲?

2018年9月《每日郵報》刊登了一篇震驚世界學術界的新聞,

2018.09.,Daily Mail,來自哈佛大學醫學院教授研究的成果:抗衰老科技NMN,可能讓人類活到150歲

今天,明宇健維將告訴你,這其中的奧秘

01  生命的期限

生命是有期限的,只要是生命,無論再長壽,終歸是有離世的一天,關於壽命的期限,我國古代的醫學養生認為,人的壽命能達到一百二十歲,《尚書,洪範篇》說:壽、百二十歲也。但事實上並不是每個人都能如此,即便沒有疾病纏身,有的人能活到百二十有餘,有的人卻又在八九十就離世

關於長生不老的故事,千年前到如今從不缺乏,秦始皇尋仙丹、漢武帝迷信方術、晉武帝、宋徽宗、明神宗、清雍正皇帝,也苦尋長生不老之法

千年過去,不禁想問一句,以我們如今的醫療技術,依然無法窺探到生命的秘密嗎?

02  生命的長短,有它的規律

記得好幾年前的走近科學欄目就播出過這類話題的節目,我國被稱為“長壽村”的地方也不止一二,雖然多年前的我們並沒有找到長壽的答案,但種種現象告訴我們,長壽,並不是隨機事件,而是有規律和緣由的。

03  衰老就是細胞的新陳代謝

現代醫療水準下的我們,都已經知道衰老是什麼樣的一個生物過程,在中學的課本上都已經告訴我們,人體細胞每天都在進新陳代謝,有細胞死去,有細胞新生,人類的成長階段,新生的細胞比死去的細胞少,人類的各個器官組織得到增長,當人類停止生長的時候,就說明新生的細胞核死去的細胞相當,而總有一天,人體的各個臟器會逐漸衰竭,也就是新生細胞越來越少的時候。

可是這其中的原因呢?是什麼東西在控制著新陳代謝?

1906年,英國生物化學家亞瑟·哈登和威廉·約翰·楊發現輔酶NAD

1929年,亞瑟·哈登與Hans von Euler-Chelpin分享了諾貝爾化學獎,Hans von Euler-Chelpin發現NAD+在人類代謝過程中發揮著關鍵作用

1931年,Conrad A. Elvehjem和CK Koehn發現了NAD+較早的前體煙醯胺,它可以有效緩解糙皮病(一種維生素缺乏性疾病)

1936年,Warburg證明NAD是氧化還原反應所必需的

1980年,NAD+被首次應用於疾病治療

1994年,喬治·柏克梅爾研發“穩定型NAD

2004年,科學家們發現了煙醯胺核苷是NAD+的前體

2013年,實驗室小白鼠研究發現,增加NAD+的水準能恢復線粒體功能

2015年9月,國家藥品監督總局批准國內某制藥公司注射用輔酶Ι

的藥品批號

2016年,哈佛大學醫學院發現:相當於人類年齡70歲的小白鼠服用NAD+一周後回到了20歲的狀態,並且健康壽命延長20%

2017年,80多歲的李嘉誠收購一家生產NAD+前體物的生物技術公司

2019年6月4日,中科院遺傳所研究證明,NAD+對細胞程式性死亡的調控起到了至關作用

04  健康的秘密:NAD+

百年研究,NAD+給六位研究者帶來了諾貝爾獎,長壽的神秘面紗一點點褪去,人類終於找到延長壽命的關鍵條件:NAD+

人類不同於小白鼠,我們需要一種安全的方式為人為地添加NAD+,於是,可服用的NAD+前體,NMN類產品迅速出世,短短一年,NMN的知名度大範圍地擴散,不遠的將來,人類就將走向一個全民百歲的時代。

李嘉誠的“不老藥”有哪些功效?

四川大學團隊對NMN“不老仙丹”根本作用機理的詳細介紹。此次我們將為各位讀者帶來這篇綜述文章的重頭戲,NAD+與疾病的關係,以及包括NMN和NR在內的的一系列NAD+增強手段,在臨床領域的應用前景。值得指出的是,本篇綜述中還包含了NAD+許多鮮少被人提及的重要功效。

01.NAD+代謝異常所引發的病變

輔酶NAD+參與了生物體內大量關鍵的生理過程,它的代謝異常將會嚴重影響細胞和組織的健康。通常來講,根據組織類型的不同,細胞內的NAD+水準會在0.2~0.5毫摩之間波動。但是任何生理刺激或細胞壓力都會大幅影響NAD+的穩態,造成代謝異常

NAD+與感染

外部病原體造成的感染通常會導致機體生成大量的ROS,進而對包括DNA在內的生物大分子造成破壞,而NAD+則能通過啟動PARPs進行損傷修復。同時,PARPs還能通過NF-κB對CCL2-CCR2信號通路進行調控,啟動NK細胞,對病毒進行清除。同樣依賴於NAD+的Sirtuins和CD38+也都是機體對抗感染的主要方式。

目前已知有數種病毒的感染都會嚴重影響NAMPT和QPRT等NAD+關鍵合成酶的翻譯,造成機體NAD+水準大幅下降,加劇感染對機體造成的侵害

NAD+與衰老

大量實驗數據顯示,人體多種組織中的NAD+水準會隨著年齡增長而下降。目前學界認為,這種現象是由NAD+消耗的增加或其合成能力減弱所導致的。目前對於後者的研究主要集中在NAMPT上,然而相關研究存在許多爭議和矛盾結果,相比之下,NAD+消耗加劇方面的證據則要更加充分

NAD+缺乏加速衰老

NAD+水準下降是生物功能紊亂的主要驅動因素之一,大量動物實驗顯示通過NR和NMN對NAD+進行補充,能夠起到延緩衰老和延長壽命的功效。

NAD+下降引發線粒體功能異常

線粒體功能異常是衰老的9大標識之一,而NAD+不足則是引發這一現象的罪魁禍首。細胞核內的NAD+下降會嚴重影響線粒體相關基因的表達,而細胞質中的NAD+則能夠通過調控氧化酶和還原酶的活性,對線粒體進行保護。通過NAD+補充劑等方式恢復NAD+水準,則能在多種衰老模型中顯著改善線粒體功能

NAD+與氧化應激

NADH與NADPH間的相互轉換,是細胞進行還原反應的關鍵資源,維持正常的NADH/NADPH比值,夠顯著緩解細胞的氧化應激,而NAD+則是該比值的核心調節者。此外,依賴於NAD+的PARPs和Sirtuins也都是重要的氧化應激調節劑。

NAD+與晝夜節律

Sirtuins對分子鐘蛋白Cry,Per和Bmal的調控能力,是細胞維持晝夜節律的必要因素。

NAD+抵禦衰老與癌症

NAD+與腫瘤發生過程中的代謝重編程

細胞在癌變過程中,為了增強對壓力的抵抗和滿足無限增生的需求,會將自身的葡萄糖代謝模式轉換為有氧糖酵解。這種特殊的代謝模式會消將大量的NAD+轉化為NADH,從而徹底改變細胞內的NAD+/NADH比值,這種轉變會導致細胞生產大量ROS,造成更進一步的DNA損傷,氧化應激和炎症,加速癌症惡化進程

NAD+水準的降低還會影響PARPs和Sirtuins的活性,這兩種NAD+消耗酶與癌症的關係目前尚不明晰:

  • 一方面它們能夠提升細胞中基因組的穩定性,減少癌症進一步突變的可能性;此外,也有大量研究指出,這兩種蛋白在多種癌症中都表現出了顯著的過表達。因此PARPs和Sirtuins與癌症的關係,還需要更進一步的探索。
  • 另一方面,NAD+與NADH共同調控的NNMT和2-HG也是兩種與癌症高度相關的關鍵蛋白

NAD+與代謝疾病

NAD+水準在2型糖尿病、肥胖和非酒精性脂肪肝模型的組織細胞中有明顯下降,而通過補充NMN和NR或改變關鍵代謝酶表達等方式提升NAD+水準,都能有效改善這三種代謝疾病的部分病理

NAD+代謝異常與代謝疾病的關係

NAD+與腎衰竭

在小鼠的腎衰竭模型中,PARPs會被大量啟動,造成NAD+高度損耗,同時,腎臟中的NAD+合成能力也會出現下降,兩者相互作用引發了組織內NAD+水準的驟降,引發更嚴重的連鎖反應

NAD+同時也在多種常見的神經退行性疾病,心血管疾病中扮演重要角色。

NAD+與神經退行性疾病的關係

02.補充NAD+的治療潛力

鑒於NAD+的減少是衰老和諸多衰老相關疾病的標誌,因此補充NAD+成為了一種極具前景的抗衰延壽和疾病治療策略

目前提升NAD+水準的策略主要分為兩類,一是利用NAD+前體對NAD+進行補充,二為通過抑制PARPs和CD38等關鍵的NAD+消耗酶來減少NAD+的消耗

NAD+前體:NMN

動物實驗顯示,NMN能夠迅速的提升細胞內的NAD+水準,並且安全性極高。長期攝入NMN大幅提升糖尿病小鼠的胰島素抵抗,並將包括線粒體功能和基因表達在內的生理過程恢復至年輕狀態。NMN還能大幅改善衰老引起的神經問題和認知功能。

目前有大量證據顯示攝入體內的NMN會立刻被多種器官迅速吸收

在實驗中,NR對NAD+造成的系統性提升效果十分出色,目前這款前體正在有計畫的進行大量臨床測試。更重要的是,NR的運輸機制目前相對明晰,它可以直接通過ENTs被轉入細胞,並被代謝為NMN後再轉化為NAD+。

總結

NAD+作為多種基礎生理過程的核心參與者,影響著包括衰老在內的多種疾病。近年來大量相關研究的發表,很好的反應了NMN在未來的應用中的優良前景

曾經多次的提出希望能夠為大家挑選一款最好的NMN

基於對NMN這種物質的理解,“最好”二字在我們心中的意味著兩個關鍵,原料及生產工藝的絕對安全性,純度與價格之間的最優性價比。

目前市面上符合時光派標準的NMN產品,就是這款NMN9600膠囊。該產品的NMN含量高,而所用的原料純度更是高,並且安全性等因素也通過了多所第三方檢測機構的嚴苛審查。

風靡全球的NMN到底是什麼?

追求長生不老從古至今都是人類孜孜不倦追求的終極目標。前有秦始皇東海瀛洲尋仙,後有歷代帝王癡信方士,煉丹服藥。當然,歷史已經向我們證明了,這些先人們哢哢哢的一頓操作,並沒有任何卵用,幾千年後統統都變成了旅遊景點。
不過,隨著時代的進步,科技的發展,當歷史的車輪前進到了我們所生活著的21世紀,“抗衰神藥”真的被發現了,它並非傳說中那般夢幻,只是我們人體內的本源性物質NMN

NMN是什么?

NMN是人體內固有的物質,也富含在一些水果和蔬菜中。在人體中NMN是NAD+的前體,其功能是通過NAD+體現。NAD+又叫輔酶Ⅰ,全稱煙醯胺腺嘌呤二核苷酸,存在每一個細胞中參與上千項反應。

2013年12月,哈佛大學教授David Sinclair在世界權威雜誌《細胞》上發表論文稱:用NMN提升NAD一周後,實驗室小鼠的壽命延長了30%。22個月大的小鼠(相當於人類60歲)和之前判若兩鼠,與6個月大的小鼠(相當於人類20歲)線上粒體穩態、肌肉健康等關鍵指標上有著相似水準。

商業的敏銳性使得NMN迅速完成了從科研到市場的轉化,加上生產技術的成熟,一些以NMN為主要原料的產品快速普及。普通的消費者成為購買NMN產品的主力軍,但是,低門檻准入也帶來一些問題。魚龍混雜的市場充斥著諸多安全隱患,在享受NMN抗衰老益處的同時,你有沒有懷疑過它的安全性呢?

 

 

原料是安全的前提

雖然NMN被證實對人體無安全風險,但不同的原料產出的成品品質也會有所差別,甚至可能產生某些有害雜質,所以原料的安全性是NMN安全的重要前提。

 NMN分為α和β兩極,二者唯一的區別是一個化學鍵的位置不同,導致二者空間結構不同,而只有β是有效極,具有生物活性,進入人體後可轉化為NAD+。βNMN純度不夠高的產品就會存留大部分αNMN,α和β兩極中和,就會使得產品無效。

 

LIFE PASSWORD NMN11000,每片添加超過163.3mg純度高達99.8%的NMN原料,三合一配方,功效更加突出,在目前全球市場上在售同類產品中處於領先水準。且利用全球領先的生物酶法技術生產,其中β-NMN的含量更是在同類產品中遙遙領先。

检测报告验证安全

任何食用的東西多重檢驗才能更加放心。對於NMN來說,除了基本的成分、微生物、重金屬等檢測之外,還應該對長短期口服毒性、基因等各項關鍵細節進行檢驗,這些細節都合格的情況下,NMN才算安全。

 

生产工艺也很关键

LIFEPASSWORD 生命密碼,聯合十餘位知名科學家、上百名頂尖生物科研人員,經過數萬次反復科學試驗,研發出全新一代NMN產品。NMN11000的生產採用了美國最尖端的生物中間體工藝,最大程度確保了NMN原料的高純度(99.8%)與生物活性,且所有生產工序均在10萬級GMP恒溫自動化生產車間完成。

 

 

其中值得一提的是,生產中冷壓衝壓壓片技術是北美目前獨有的對高端原料功效“0損耗”的壓片技術。核心是利用強大的壓力直接把粉末原料壓成片劑,不經過加溫、制粒、水溶等中間工序,不加其他任何粘合成份,多用於活性提取的生物製劑產品中,能最大程度保留生物活性成份。

從生產到封裝,每一個環節都採用尖端前沿技術工藝,每一個細節都符合美國專業生產標準,確保用戶買得安心,用得放心。

 

根據現在大部分用戶的回饋,以及我們自己和身邊的真實案例,我們看到有以下幾方面的效果:

 

✅睡眠的品質顯著改善,睡得更早,入睡更深。

✅精力和體力有明顯提升,疲乏和沉重感有很大改善。

✅皮膚狀態變好,面色更紅潤,氣血更充沛。

✅記憶力有改善,不像過去那麼容易忘記事情了。

✅腸胃功能有改善,排便更通暢了。

✅高血糖有下降改善。

✅運動能力增強。

✅視覺疲勞減輕、視力改善。

✅性功能有明顯提升。

 

   

✅本品不可替代常規飲食。

✅本品不推薦與抗生素同時服用。

✅因高濃度植物提取物粉末對空氣中水分有極強的吸附力,部分產品可能會產生輕度結塊現象,不會影響效果,請放心使用。

✅EZZ瓶身採用雙層嵌套設計,增加穩定性,密封效果更佳。

 

   

✅建議在早飯後或午飯前服用,最好不要在晚上服用,避免身體太過興奮影響睡眠。

✅剛開始服用時,請先服用1粒,因為個體差異,10%的人群會在服用後出現發熱、發紅、發癢的反應,這是正常的,當NMN得到補充時,會加速人體血液迴圈,提升細胞能量,因此出現發熱等現象。

✅50歲以下人士如果在連續一周服用1粒後沒有產生改善感覺,建議增加至2粒。

✅NMN是天然物質,不含人工化學品及任何激素類物質,安全無毒,無副作用,可長期服用。

  

可以長期服用嗎

NMN本身就是人體內天然存在的物質,也存在於很多食物之中,純天然無害。研究證實,補充NMN不會影響補充合成途徑的各種酶的活性,口服NMN後對補充合成途徑的各個酶NAMPT、PARP、NMNAT等活性都沒有影響。

可以通過食物補充嗎

研究表明,70kg左右的65歲以上的老年人每天應補充600mg左右的NMN,45歲左右的年輕人300mg 左右。這就相當於每天要吃掉32kg 左右的毛豆或是54kg的西蘭花,這還是在保證完全吸收的情況下,當然這是根本無法實現的,因此補充非食物來源的NMN尤為重要。

 

安全嗎

NMN 作為一款已經得到了科學認可的長壽膳食補充劑,它的安全性毋庸置疑:

1.它是人體的內源性物質,身體中無處不在,無時不有;
2.它是輔酶NAD的前體,而輔酶NAD在人體中起催化反應進行的作用,而不是直接的反應物;
3.NMN的推薦劑量在安全範圍內;
4原材料、製造工藝綠色環保,無引入任何有毒有害、有副作用的物質。

NMN為什麼能抗衰老?

自古以來,人們都認為衰老是一種不可抗拒的自然規律,但同時卻又不斷地去探求長生不老的秘方。面對衰老,我們真的就無能為力了嗎?衰老真的就是一種不可逆轉的生命現象嗎?在說這個問題之前,我們先來瞭解一下人為什麼會隨著年齡的增長而衰老!

 

人為什麼會衰老?

人衰老是一個自然的生理過程,因為人體細胞有一個生命週期,當人的年齡越來越大,新生細胞越來越少,而本來的細胞在逐漸衰老,所以人會衰老。

 

 

 

總結:人體之所以會慢慢衰老,在科學的不斷深入後,得出了這樣一個結論:DNA的損傷和NAD+的慢慢缺失會讓人體衰老,而NAD+的流失是讓DNA損傷加速的重要因素,所以NAD+於人體衰老有著密切的聯繫,抗衰老的關鍵也就在NAD+上了。

 

而正是由於NMN作為NAD+的前體,可以讓其在細胞內的數量增多,因此,NMN具備直接從根本上抗衰老的作用。

哈佛大學教授抗衰老研究中心主任David ASinclair首次證實了NMN的抗衰老作用,只是簡單地給小鼠從食物中攝入了NMN後,發現小鼠的衰老速度降低到了自然狀態的三分之二,這就意味著其壽命將會延長30以上。

NMN抗衰老的原理                                                   輔酶I(NAD+)維持細胞核與線粒體之間的化學通信,如果此通信減弱,將導致線粒體衰退,線粒體的衰退是細胞衰老的一個重要原因。另外輔酶I作為唯一底物被消耗而生成組蛋白去乙醯化酶Sirtuins,Sirtuins被稱為長壽蛋白,其可將細胞代謝過程中不斷增加的表觀遺傳學噪音消除,保持基因的正常表達,維持細胞的專職功能,減緩細胞演化為衰老細胞的過程。                                                        

隨著年齡增長,體內 NAD+ 水準會逐漸下降,引發衰老和相關身體機能退化,例如出現皺紋、肌肉松垮、脂肪積聚及心腦功能衰老等問題。在這個時候, NMN(ACMETEA W+NMN) 可以進入體內直接補充 NAD+ ,增加 NAD+ 含量,修護受損 DNA 細胞,孜善身體各種不莨症狀。

                                                                                                                由於難以透過食物補充足夠NMN ,額外攝取NMN對維持健康尤其重要﹗NMN的抗衰老作用是2014年由哈佛大學的大衛·辛克萊爾實驗室初步發現的。並在2016-2018年間由哈佛醫學院、華盛頓大學、日本應慶大學等世界科研機構分別從逆轉肌肉萎縮、提升體能;抑止衰老引起的認知能力下降;逆轉血管死亡、保護心腦血管功能等多個角度荃方位證實了其抑止衰老,延長壽命的顯著效果。這些發現使ACMETEA W+NMN迅速成為衰老醫學領域的研究焦點,短短幾年間已有發表於《細胞》、《自然》、《科學》等威望學術期刊的近百篇論 文對其功效及作用機理進行了詳細闡述。其中NMN相關的研究已經得過多次諾貝爾獎了。

 

 

 

 

NMN真的可以抗衰老嗎?

NMN的抗衰老作用,是2014年由哈佛大學的大衛·辛克萊爾實驗室初步發現的。並在2016-2018年間由哈佛醫學院、華盛頓大學、日本應慶大學等世界科研機構分別從逆轉肌肉萎縮、提升體能;抑制衰老引起的認知能力下降;逆轉血管死亡、保護心腦血管功能等多個角度全方位證實了其抑制衰老,延長壽命的顯著效果。

 

這些發現使ACMETEA W+NMN迅速成為衰老醫學領域的研究焦點,短短幾年間已有發表於《細胞》、《自然》、《科學》等威望學術期刊的近百篇論文對其功效及作用機理進行了詳細闡述。其中NMN相關的研究已經得過多次諾貝爾獎了。

 

 

ACMETEA W+NMN究竟是什麼呢?為什麼能夠抗衰老?

 

研究發現,NMN是體內的一種關鍵性輔酶NAD+的前體物質。NAD+既是細胞內DNA修復系統的重要原料,也是細胞核與負責能量合成線粒體間的關鍵聯絡因數。同時,人體內NAD+含量與具有延長壽命和抑制衰老作用的sirtuins蛋白家族的活型密切相關。人體各種所需物質都需要輔酶來合成。關於ACMETEA W+NMN的逆衰、抗衰老作用,其實都是在基於NAD+合成後的輔助功能。

衰老的核心機制是細胞基因受損和線粒體能量生成減少,導致細胞提前凋亡或者活.力下降,引起癌症、尿糖病、心血管疾病、癡呆等很多疾病因人體衰老而發病率增加。

NMN是人體固有的代謝產物,它可以直接轉換為關鍵性輔酶NAD+。NAD+是人體近一半代謝活動不可或缺的物質,但隨年齡增長而快速下降。所以服用ACMETEA W+NMN可將NAD+水準提高,從而使細胞的能量水準和基因修復能力恢復到年輕態,達到延緩甚至逆轉衰老的效果。因此,從原理上講,ACMETEA W+NMN抗衰老是真的。

 

ACMETEA W+NMN通過NAD+解放衰老的八大科學支撐:

 

①激發長壽蛋白(NAD+激發sirtuins1-7長壽蛋白家族)

 

②強抑制氧化(NAD+多途徑激發細胞抑制氧化防禦,消滅人體有害自由基)

 

③促進DNA修復(NAD+參與修復DNA損傷,減少基因突變)

 

④提升神經活型(NAD+促進神經元的分泌與代謝活動)

 

⑤增加染色體端粒長度(NAD+激發端粒酶,修復端粒,延長端粒)

 

⑥優化細胞代謝(NAD+參與細胞的物質和能量代謝)

 

⑦提升免.疫力(NAD+參與細胞的物質和能量代謝)

 

⑧提升人體染色體穩定性(NAD+維護染色體結構的穩定性,降低細胞癌變風險)

 

人體衰老主要來源於DNA的損傷和NAD+的慢慢缺失

 

人體之所以會慢慢衰老,在科學的不斷深入後,得出了這樣一個結論:DNA的損傷和NAD+的慢慢缺失會讓人體衰老,而NAD+的流失是讓DNA損傷加速的重要因素,所以NAD+於人體衰老有著密切的聯繫,抗衰老的關鍵也就在NAD+上了。

 

正是由於nmn作為NAD+的前體,可以讓其在細胞內的數量增多,因此,ACMETEA W+NMN具備直接從根本上抗衰老的作用。哈佛大學教授抗衰老研究主任 David A. Sinclair教授首次證實了nmn的抗衰老作用,只是簡單地給小鼠從食物中攝入了nmn後,發現小鼠的衰老速度降低到了自然狀態的三分之二,這就意味著其壽命將會延長30%以上。

 

NAD+在衰老機理中的重要性!

 

2019年最新的衰老生物學研究彙編中,總結了幾十年來衰老研究中的兩大核心問題,第二個問題就提到了隨著年老,細胞內NAD+水準下降可能是衰老的機理之一。在如此高度概括的學術總結裏提到NAD+,可見NAD+在衰老機理中的重要性。

 

NAD+參與細胞內的反應非常廣泛,多達上千種,包括能量代謝(energy enzyme activity,energy production)、染色體的穩定(chromosome stability )、DNA的修復和長壽蛋白sirtuins的激發,而且NAD+是一種消耗型的物質,大多數這樣的反應都需要通過消耗它來維持正常運轉。其中特別是長壽蛋白家族的激發,包括sirtuins 1~7,是核心的longevity mechanisms長壽機理。

 

所以,NAD+非常重要。研究也表明,隨著年齡的增長,NAD+的合成是逐漸減少的,消耗是逐漸增加的,因此NAD+的總量越來越少。這種減少又和衰老與疾病有很強相關性。

 

前面是機理推斷。那麼通過積極的干預,即補充ACMETEA W+NMN來驗證NAD+是否真的在衰老過程中扮演重要的作用?

 

結果大量的動物實驗表明,通過提升NAD+水準,的確多方位提升了健康品質,延緩了衰老症狀。涉及的面是很廣的,包括神經系統、肝腎、血管肌肉的健康改良等等。另外,補充NAD+的方式包括運動和飲食限制、還有ACMETEA W+NMN補充劑。

 

研究發現, NMN能夠顯著改良小鼠與年齡相關的生理衰退, 如抑制年齡相關的體重增加,增強能量代謝,改良胰島素敏銳性和血漿中脂質分佈,改良眼部功能;NMN通過組織特異性方式預防年齡相關的基因表達變化,並且增強骨骼肌中的線粒體的氧化代謝,至少部分地介導其抗衰老作用。

 

研究表明,在大鼠體內,作為抗老化候選化合物的NMN比Nam保留時間長。因為Nampt被 NAD+抑制,Nam不通過Nam→NMN→NAD+途徑轉化為NAD+,而是通過Nam→煙酸(NiA)→ 煙酸單核苷酸(NaMN)→煙酸腺嘌呤二核苷酸 (NaAD)→NAD+途徑製備NAD+;另一方面,來自NMN的NAD+合成不受細胞NAD+水準的調節,因此NAD+的增加更為容易。根據代謝控煙醯胺單核苷酸作為NAD+補救途徑中的中 間體,具有抑制氧化、減少氧化應激的作用,特別是在抗衰老方面,NMN可以減緩生物體的生理衰退,增強能量代謝,延長壽命。鑒於 NMN是人體內源性物質,安荃性較高,且熱穩定性較好,因此NMN作為活型物質在功能食品領域開發中具有廣闊前景。

 

ACMETEA W+NMN調節細胞存活和死亡、維持氧化還原狀態等。近期研究發現,通過調節生物體內NMN的水準,對心腦血管疾病、神經退行性病及老化退行性疾病等有較好的冶療和修復作用。